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Abstract. A lattice boson model is used to study ordering phenomena in regular 2D arrays
of superconductive mesoscopic granules, Josephson junctions and pores filled with superfluid
helium. The phase diagram of the system, for when quantum fluctuations of both the phase
and the local superfluid density are essential, is analysed both analytically and by the quantum
Monte Carlo technique. For the system of strongly interacting bosons it is found that as the
boson densityn0 is increased the boundary of the ordered superconducting state shifts tolower
temperaturesand atn0 > 8 approaches its limiting position corresponding to negligible relative
fluctuations of the moduli of the order parameter (as in an array of ‘macroscopic’ granules). In
the region of weak quantum fluctuations of phases, mesoscopic phenomena manifest themselves
up to n0 ∼ 10. The mean-field theory and functional integral(1/n0)-expansion results are
shown to agree with those of quantum Monte Carlo calculations of the boson Hubbard model
and its quasiclassical limit, the quantumXY -model.

1. Introduction

The study of mesoscopic systems has already led to many new interesting fundamental
concepts [1, 2]. Progress has been especially rapid due to the development of nano-
technology methods which has opened up new avenues for sophisticated experiments. In
this connection the study of arrays of ultrasmall granules, microclusters and Josephson
junctions is of particular concern (see e.g. [3, 4]).

Granular superconductors, Josephson arrays and superfluid helium in porous media [5]
are, as a rule, described in terms of different modifications of the quantumXY -model (see
below), but this description is correct only if the relative fluctuations of the local superfluid
density are not essential [6]. Such fluctuations take place in sufficiently large granules at
temperatures far below that of the onset of superconductivity in each individual granule. To
study the role of quantum fluctuations of moduli other more appropriate models should be
used.

A convenient starting point for the description of theN×N system of interacting bosons
(Cooper pairs in granules, He atoms in pores etc) is the Bose–Hubbard Hamiltonian:

ĤH = t

2

∑
〈i,j〉

{
2a†i ai − a†i aj − a†j ai

}
+ U

2

∑
i

{
a
†
i ai − n0

}2
(1)

wherea†i (ai) is a boson creation (annihilation) operator at a sitei = 1, N2; t is the strength
of the hopping between nearest-neighbour sites〈i, j〉 andU > 0 is an on-site repulsive
interaction.
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The system (1) has a rich phase diagram [7, 8], containing a Mott insulating phase (at
zero temperature) and the superfluid and normal (metal) phases. At a commensurate density
n0 = 〈a†i ai〉 (the number of bosons is an integer multiple of the number of sites) andT = 0,
the boson Hubbard model lies in the same universality class (see [7–9]) as the quantum
XY -model with the Hamiltonian

ĤXY = J
∑
〈i,j〉

{
1− cos(ϕi − ϕj )

}− U
2

∑
i

{∂/∂ϕi}2 (2)

where theϕi ∈ [0, 2π) are phases of the order parameter. Obviously, atT 6= 0 the
requirement for the density to be commensurate,n0 = k, is too stringent. In the latter case,
the behaviour of the system (1) will dependcontinuouslyon n0, and thecritical properties
will be the samein some bandn0 = k ± δn0; the width 2δn0 should decrease as the
temperature is lowered.

The properties of the system (2), which exhibits at finite temperatures superfluid and
metallic phases, are described by two dimensionless parameters: the temperature in units of
the Josephson coupling constantT = kbT /J and the quantum parameterq = √U/J which
is responsible for the strength of the zero-point fluctuations of the phase. The corresponding
parameters of the Hubbard model areT = kbT /(tn0) andq = √U/(tn0).

The general aim of this communication is that of comparing the phase diagrams of
models (1) and (2) in order to estimate the importance of the mesoscopic phenomena in
regular 2D systems. Of prime interest to us is the case offinite temperatures, together
with the intriguing quantum phase transitions which take place atT = 0 (see e.g. [10]
and references therein). Sections 2 and 3 present the mean-field and functional integral
(1/n0)-expansion approaches. Fromab initio quantum Monte Carlo calculations of different
characteristic quantities (section 4) we determine the phase diagramT cH(q; n0) of the boson
Hubbard model at different densitiesn0 and compare it (section 5) with the phase diagram
of the 2D quantumXY -model.

2. Mean-field approximation

A qualitative estimation of the phase diagram of the boson model (1) can be obtained in a
simple mean-field approximation (see e.g. [11–13] and references therein). The boundary
T c(q; n0) of the ordered state can be found in the MFA from the equation

q2

z
=
( ∞∑
n=−n0

{n+ n0+ 1}
{

e−q
2[n−η]2/[2T ] − e−q

2[n+1−η]2/[2T ]
}/
{2n+ 1− 2η}

)

×
(
n0

∞∑
n=−n0

e−q
2{n−η}2/{2T }

)−1

(3)

whereη = µ/U − z/(2q2n0) and z is the number of nearest neighbours (z = 4 for a 2D
square lattice). Equation (3) for the boundary of the ordered state differs in some details
from that of reference [12]. The two equations become equivalent in the limit of large
densitiesn0, with equation (3) being more accurate forn0 ∼ 1.

The condition for the chemical potentialµ is that the mean number of particles must
be equal ton0:

∞∑
n=−n0

n exp(−q2{n− η}2/{2T }) = 0. (4)
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It should be pointed out that in the limitn0 → ∞, equation (4) givesµ = 0 and the
boundary of the ordered state transforms to that of the quantumXY -model [11].

Figure 1. The phase diagram of the 2D Hubbard model (1) and the quantumXY -model (2).
S: superconducting; N: normal state. The mean-field results:1: n0 = 1; 2: n0 = 2; 3: n0 = 6;
4: the quantumXY -model (n0 = ∞). The (1/n0)-expansion (8) results:5: n0 = 6; 6: n0 = 14.
Symbols indicate points where phase transitions have been found by the MC method.

The linesT cH(q; n0) of the boson Hubbard model obtained from equations (3) and (4)
are shown in figure 1 for different densitiesn0. Calculation shows that the linesT cH(q; n0)

reach their limiting position, the phase boundaryT cXY (q) of the quantumXY -model, at
n0 > 25.

3. The (1/n0)-expansion

To improve the qualitative mean-field estimation of the difference of the phase diagrams of
models (1) and (2), let us represent the partition function of the Hamiltonian (1) in a path
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integral representation as a trace over a complexc-number Bose field8 [9]:

ZH = tr
{
e−S

} = ∫ D(8,8∗) e−S(8,8
∗)

S(8,8∗) =
∫ β

0

{
i
∑
i

8̇i8
∗
i +

t

2

∑
〈i,j〉
|8i −8j |2+ U

2

∑
i

[|8i |2− n0
]2

}
dτ

8i(0) = 8i(β)

8∗i (0) = 8∗i (β).

(5)

Substituting8i =
√
n0+ δnieiϕi (for integern0) in equation (5) gives

ZH =
∫

D(δn, ϕ) e−S(δn,ϕ)

S(δn, ϕ) =
∫ β

0

{
U

2

∑
i

[δni ]
2+ i

∑
i

δni ϕ̇i + tn0

∑
〈i,j〉

[
1+ δni + δnj

2n0

− √(1+ δni/n0)(1+ δnj/n0) cos(ϕi − ϕj )
]}

dτ

δni ≡ ni − n0 = δni(τ )
ϕi = ϕi(τ ).

(6)

From equation (6) one can see that increasing the mean number of particles at each
granule, provided thatJ = tn0 andU are constant, enables one to leave the action in terms
of the phase degrees of freedom unchanged [6, 9]. This leads to the action of the quantum
XY -model.

As we are interested in the difference between the phase boundaries of models (1) and
(2) at sufficiently high but finiten0, let us expand the superfluid density in powers of 1/n0

up to second order. Defining the superfluid density on the basis of the response of a system
to the shift of phases at the boundary [14], from equation (6) we have

νs = γ + 1

2n2
0

0(2) + · · · (7)

where γ is the helicity modulus of the quantumXY -model [15, 16]. The first-order
corrections are equal to zero due to the invariance of the action of theXY -model under
‘time’ inversion.

The rather complex expression for0(2) can be represented as some equilibrium value of
the quantumXY -model [13], which can be easily estimated via the quantum Monte Carlo
technique or one of the self-consistent approximations [17].

Given a value of the coefficient0(2) in the expansion (7) as a function of the control
parameters,0(2) = 0(2)(q, T ), one can construct an upper estimate for the phase boundary
T cH(q; n0) of the boson Hubbard model (1):

T cH(q; n0) 6 T cXY (q)
{

1+ νs(q, T
c
XY )− γ (q, T cXY )
γ (q, T cXY )

}
= T cXY (q)

{
1+ π0

(2)(q, T cXY )

4n2
0T

c
XY (q)

}
(8)

whereT cXY (q) is the line of topological phase transitions of the quantumXY -model (2). The
estimate (8) can be easily obtained from the assumption that the lines of phase transitions
of both models are defined by the universal relation [15]

γ (q, T cXY ) = 2T cXY /π νs(q, T
c

H) = 2T cH/π.
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The results of the above-mentioned estimations are given in figure 1. It turns out that in
the region 0.7 < q < 1.5 the line of phase transitions of the Hubbard model approaches
(to within 5%) its limit at n0 = 8, whereas some greater densitiesn0 > 16 are required
in the strongly quantum regionq > 1.7 because of the rapid increase of the coefficient
0(2)(q). Direct Monte Carlo calculation of the phase diagramT cH(q) (see below), which is
in agreement with the predictions of the (1/n0)-expansion for 0.7 < q < 1.5, shows that
in the case of astrongly interacting system (atq > 1.7) theoretical estimations markedly
overestimate the maximum boson densityn0 at which mesoscopic effects are still essential.

To conclude this section, one additional feature should be recognized. It is easy to see
that all of the estimations presented in this section and starting from the partition function (5)
have been carried out in thegrand canonicalensemble with zero chemical potential. This
has enabled us to make all of the calculations analytically, disregarding the restrictions on the
total number of particles in the system when integrating over the fluctuations of the moduli of
the order parameter. In order to justify comparing MC results with theoretical estimations,
we need to show that, when calculated within the (1/n0)-expansion, the discrepancyδn
between the mean number of bosons per granule andn0 is small.

From the expression given in (6) forδn, one can write

δn = 1

n0
1(1) + · · · . (9)

As calculation shows, the value of1(1) is less than 0.1 in the regionq > 0.7, T < 1. This
observation justifies our use of the grand canonical ensemble with zero chemical potential
in estimating the coefficient0(2) of the series (7).

4. Quantum Monte Carlo simulations

In studies of properties of the boson Hubbard model (1) at different values of the control
parameters{q, T } we have applied the ‘chequerboard’ break-up [18]. In this method
the classical degrees of freedom to be sampled are the imaginary-time-dependent boson
occupation number field{npi }, i = 1, . . . N2, p = 0, . . . ,4P . The algorithm of the Monte
Carlo (MC) calculations of the quantumXY -model was described in [16, 19]. We have
performed extensive tests to verify that our results converge in the limitP → ∞. The
results presented below have been obtained by the averaging over 3–5 initial configurations
formed by multiplication by 4P (by P for theXY -model) of the random configuration of
bosons (phases for theXY -model) in theN ×N lattice.

The main focus of attention has been the calculation of the superfluid densityνs. This
quantity has been determined from the winding number [8, 18]:

νs = 0.5T
〈
W 2
x +W 2

y

〉
H

Wx =
4P∑
p=0

N∑
iy=1

(−1)ix+pnpi

Wy =
4P∑
p=0

N∑
ix=1

(−1)iy+pnpi

(10)

wherenpi means the number of bosons at a sitei (with coordinates{ix, iy}) at the levelp
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(a)

(b)

Figure 2. (a) The superfluid densityνs (the helicity modulusγ ) versus temperatureT atq = 0.2.
The dependence 2T/π (see the text) is given by a dashed line. The data are connected to guide
the eyes. If not present, error bars are smaller than the size of the data point. (b) The superfluid
densityνs (the helicity modulusγ ) versus temperatureT at q = 2.0.
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of a 3D classical system. We have also used the current autocorrelation function [20]:

νs = − 1

n0N2
〈T̂x〉H − 1

n2
0N

2T P

P−1∑
τ=0

〈
Ĵ (p)x (τ )Ĵ (p)x (0)

〉
H

T̂x = −1

2

∑
i

{
a
†
i+xai + a†i ai+x

}
Ĵ (p)x = −

i

2

∑
i

{
a
†
i+xai − a†i ai+x

}
Ĵ (p)x (τ ) = eτβĤ/P Ĵ (p)x e−τβĤ/P .

(11)

The substitutionai → √n0eiϕi transforms equation (11) to the well-known expression for
the helicity modulusγ of the quantumXY -model [16].

As has been pointed out by Scalapino and co-workers [21], the temperature derivative
of the superfluid density gives additional information about the type of phase transition at
some temperatureT c(q): in the framework of the Kosterlitz–Thouless picture, the value of
∂(βνs)/∂β scales as a Dirac delta functionδ(T −T c). On finite lattices,∂(βνs)/∂β shows a
response which increases with lattice sizeN , the position of the maximum of the derivative
being independent ofN .

To find the derivative of the superfluid density∂(βνs)/∂β we have estimated the
difference in internal energies of systems which differ by a phase twistδϕ in the boundary
condition along one lattice direction:

β{E(δϕ)− E(0)}
n0βt

∼ νs+ β ∂νs

∂β
. (12)

One can show that for the Cooper pairs of charge 2e this phase twist can be realized in
the ‘flux quantization’ scheme and is equivalent to threading a flux through the centre of a
torus on which the system lies [21].

We have also calculated the fluctuation of bosons at lattice sites:

δn2
H =

1

4PN2

〈
4P−1∑
p=0

∑
i

{npi − n0}2
〉

H

. (13)

5. Results and discussion

Shown in figure 2 are the dependencies of the superfluid fractionνs(T ) of the Hubbard
model atq = 0.2 (in the classical region of theXY -model (2); see figure 2(a)) andq = 2.0
(see figure 2(b)). For reference, the helicity modulusγ of the quantumXY -model as a
function of temperatureT is also plotted. Analysis of data obtained at different sizesN

and densitiesn0 of the system reveals that for a system of strongly interacting bosons
(at q = 2.0) the MC results are in qualitative agreement with the theoretical estimations of
sections 2 and 3. In fact, from figures 1 and 2 one can see that as the density of bosonsn0 is
increased, the boundary of the ordered superconducting state of the system (1) approaches
that of the quantumXY -model with the critical temperaturesT cH of the Hubbard model
being greater than that,T cXY , of the quantumXY -model. The line of transitionsT c(q) can
be estimated from the universal relationνs(T

c) = 2T c/π . Thus defined, the temperature
of the metal–superconductor transition agrees fairly well with the position of the peak of
the temperature derivative of the superfluid density (12). Our calculation shows that the
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Figure 3. Tβ{E(π/2) − E(0)}/{n0N
2} as a function of temperatureT . The solid lines are

spline fits to the data.

position of the maximum of the derivative does not depend (within statistical errors) on the
system size and, as one can see from figure 3, shifts to lower values ofT asn0 is increased.

From figure 2(a) one can see that the transition temperature of the weakly interacting
bosons (atq = 0.2) appears to belessthan that of the quantumXY -model. This tendency
persists with increasing system size. The theoretical approach used in section 3 cannot help
to elucidate the reasons for this phenomenon, because atq < 0.4 the relative fluctuations of
the moduli of the order parameter are only weakly damped by the interaction, the corrections
0(2) and1(1) are large and the theoretical estimations are inaccurate.

Let us consider the behaviour ofνs(q) andγ (q) as functions of the quantum parameter
q at T = 0.5 (see figure 4). Defining the pointqc of the phase transition on the basis of the
universal relationνs(q) = 2T/π , we see that the boundary of the ordered superconducting
state of the model (1) lies to the right of the boundary of the model (2). This conclusion
is verified by the results of the calculations of the derivative∂(βνs)/∂β presented in the
inset in figure 4. The positionq|n0=3 ≈ 2.3 of a peak of the derivative is in fairly good
agreement with the critical pointqc|n0=3 ≈ 2.4 determined from the universal relation.

The dependence of the relative fluctuations of the particle number at sites of the system
versus the quantum parameterq is shown in figure 5. In particular, figure 5 can serve as
an illustration of the role of interaction in the transition to the quasiclassical limit from the
boson Hubbard model to the quantumXY -model. In fact, at finite densitiesn0, the spectrum
of the operator̂ni − n0 can be considered as unbounded only if the relative fluctuations of
the particle number are small,δn2

H/n
2
0 � 1. Then, as is usually done by examination

of Josephson or granular systems in terms of the model (2), the particle number operator
n̂i − n0 can be chosen as one conjugate to the ‘phase’ operatorϕ̂i : n̂i − n0 = i ∂/∂ϕi .
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Figure 4. The superfluid densityνs (the helicity modulusγ ) versus the quantum parameterq
at T = 0.5. The line 1/π is shown with the help of a dashed line. Inset: the temperature
derivative of the superfluid fraction (12).

Increasing of the strength of the interaction (quantum parameterq) leads to the suppression
of the relative fluctuations of the order parameter modulus as can be seen from figure 5.
It should be noted that at highq the fluctuations of the particle number aregreater than
those of the quantumXY -model, but they become more similar with increase in density.
The results presented in the inset of the figure are relative fluctuationsδn2

H/n
2
0 as functions

of the quantum parameterq at T = 0.5 at different densitiesn0. The increase inn0 is seen
to be of great importance in suppressing the relative fluctuations.

Great attention has been paid thus far to the possibility ofre-entrancephenomena, when
the global superconducting state in some region ofq is absent not only at high, but also
at sufficiently low temperatures. In the framework of theXY -model the possibility of this
phenomenon taking place has been connected with the domain of phases [11], dissipation or
mutual capacitance effects [22, 23]. From the results presented, one can see that taking into
account the fluctuation of the moduli of the order parameter does not lead to re-entrance
phenomena at least in the region explored.

To conclude, we have used the boson Hubbard model to analyse the effect of quantum
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Figure 5. The fluctuationδn2
H of the number of bosons at sites of the system as a function

of the quantum parameterq at T = 0.5. Inset: the relative fluctuationsδn2
H/n

2
0 at different

densitiesn0.

fluctuations of phases and moduli of the order parameter on the onset of superconductivity in
a 2D mesoscopic Josephson system. Both mean-field approximation and (1/n0)-expansion
lead to the conclusion that the lineT c(q) of superconductor–metal phase transitions lies
abovethat of the quantumXY -model, the latter being the quasiclassical limit (asn0→∞;
U 6= 0) of the Hubbard one. Our MC simulations show that in the regionq < 1 of small
quantum fluctuations of phases it needs an average of ten bosons per site to suppress relative
fluctuations of the local superfluid density. As the strength of the interaction is increased,
the quasiclassical limit is approached at lower densities (n0 ∼ 8 at q ∼ 2). No re-entrance
or discontinuity phenomena have been found.
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